Journal of Organometallic Chemistry, 224 (1982) 153–164 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESEN IM SYSTEM {CARBONYLMETALLAT/KETENIMIN/SÄURE}

I. IMINOACYL- UND AMINOCARBENKOMPLEXE

WOLF PETER FEHLHAMMER *, PETER HIRSCHMANN und ANDREAS MAYR

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstr. 1, ⁻ D-8520 Erlangen (Bundesrepublik Deutschland)

(Eingegangen den 27. Juli 1981)

Summary

 $[Cr(CO)_5]^{2-}$ and $[Fe(\eta-C_5H_5)(CO)_2]^-$ react with $R_2C=C=NR'$ ($R = CO_2Et$, R' = Ph; R = Ph, $R' = CH_3$, Ph, p-Tol; $R = CH_3$, R' = Ph) to give primary adducts containing η^1 -C coordinated ketenimine and secondary products of ferraazetidine-type structure which have been isolated using bulky cations like $[NBu_4^n]^+$. On mono-protonation these species yield iminoacyl, on di-protonation aminocarbene complexes.

Zusammenfassung

 $[Cr(CO)_5]^{2-}$ und $[Fe(\eta-C_5H_5)(CO)_2]^-$ bilden mit $R_2C=C=NR'$ ($R = CO_2Et$, R' = Ph; R = Ph, $R' = CH_3$, Ph, p-Tol; $R = CH_3$, R' = Ph) Primäraddukte mit η^1 -C-koordiniertem Ketenimin und Sekundärprodukte mit Ferraazetidinstruktur, die sich mit grossvolumigen Kationen wie $[NBu_4^n]^+$ isolieren lassen. Ihre Monoprotonierung ergibt Acylimino-, ihre Diprotonierung Aminocarbenkomplexe.

Einleitung

Ketenimine verschiedenster Substitutionsmuster sowie ihre N- oder C-metallierten (Keteniminato-, Keteniminyl-) und N-alkylierten (Ketenimmonium-) Derivate lassen sich besonders einfach in der Ligandensphäre von Übergangsmetallen aufbauen. Hierzu kann man von Carben- oder Carbinkomplexen und freiem Isocyanid [1-3] oder von Isocyanidkomplexen und Carbenquellen (z.B. Diazoalkanen) ausgehen [4]. Ebenso führen aber auch die Protonierung und Alkylierung von α -Cyanoalkylliganden [5], die Insertion von Cyanoolefinen in die Metall-H- [6] oder --alkylbindung [7] und die oxidative Addition von α -Chlorenaminen bzw. geeigneter Vorstufen (1,1-Dichlordicyanoethen/Amin)

0022-328X/82/0000-0000/\$02.75 © 1982 Elsevier Sequoia S.A.

an Carbonylmetallate [8–10] zum Ziel. Ein bequemer Zugang zu Keteniminatokomplexen besteht schliesslich in der Umsetzung geeigneter Metallverbindungen mit Tricyanomethanid [11,12].

Von den diskutierten Koordinationsgeometrien I-VIII sind lediglich II (in

[Ni { η^2 -(NC)₂C=C=NBu^t}(CNBu^t)₂] [4]) und IV (in [Ir{N=C=C(CN)CH(CN)₂}-CO(PPh₃)₂TCNE] [6]) röntgenographisch gesichert. Die Spezies R₂C=C- \overline{N} R'R" kann offensichtlich als Drei- (VI, VII) wie als Einelektronendonator fungieren [8]. Entsprechende Komplexe VIII, die als α -metallierte Enamine aufzufassen sind, bilden sich auch aus kationischen Isocyanidkomplexen und CH-aciden Verbindungen im stark Basischen [13], oder aus Carbonylhydriden und Inaminen [14]. Erstaunlich ist, dass keine der genannten Komplexsynthesen vom freien Ketenimin ausgeht; nur [Co(η -C₅H₅){Ph₂C=C=NPh}] und die zweikernigen Ketenimin-überbrückten Eisenverbindungen [Fe₂{ μ -Ph₂C=C=NR}(CO)₅L] (L = CO, PPh₃, R = CH₃, Ph) wurden auf diesem direkten Weg erhalten [15], wobei letztere strukturell der Klasse der " σ/π -Vinyl- und Heteroatom-verbrückten Fe₂(CO)₉-Derivate" zuzurechnen sind [16].

Wir haben nun unsere Untersuchungen über metallorganische Synthesemöglichkeiten, die sich aus der Kombination und Variation der drei Komponenten {Metallbase/Heteroallen/Säure} ergeben [17-22], auch auf Ketenimine ausgedehnt, die als Bindeglied zwischen Hetero- und Homoallenen besonders interessant erscheinen.

Im folgenden berichten wir über Carbonylmetallat/Ketenimin-Addukte und ihre Umsetzungen mit Protonensäuren.

Ergebnisse und Diskussion

1. Adduktbildung zwischen Keteniminen und Carbonylmetallaten

Gegenüber den supernucleophilen Metallcarbonylanionen $[Cr(CO)_5]^2$ und $[Fe(\eta-C_5H_5)(CO)_2]^-$ betätigen sich Ketenimine, die im Kontakt mit weniger elektronenreichen Metallen durchaus Donoreigenschaften entfalten (vgl. z.B. II),

nur mehr als Elektronenpaar-Akzeptoren (Gl. 1). Das Abfliessen der negativen Ladung vom Metall auf das eintretende Heteroallensystem spiegelt sich klar in den IR-Spektren wider: Die vergleichsweise langwelligen ν (CO)-Absorptionen der Carbonylmetallate weichen deutlich höherfrequenten CO-Banden, wie umgekehrt neue, langwellige Absorptionen (um 1550 cm⁻¹) auf Kosten der

charakteristischen Bande des freien Ketenimins um 2000 cm⁻¹ herauswachsen (Tab. 1). Mit $\overline{\Delta\nu}$ (CO) + 150 cm⁻¹ besonders ausgeprägt ist dieser Effekt bei der Bildung des [Fe(η -C₅H₅)(CO)₂]⁻/Dicarbethoxyketen-N-phenylimin-Addukts, da hier die aufgebrachte negative Ladung zusätzlich über die *gem*-Diestergruppierung delokalisiert werden kann. Die wesentliche Beteiligung von Grenzform X geht auch aus der ungewöhnlich langwellig verschobenen ν (C=O, Ester)-Bande (IR(THF): 1669, 1649 cm⁻¹) hervor.

Überraschend weisen die Lösungs- wie Festkörper-IR-Spektren der Addukte von $[Fe(\eta-C_5H_5)(CO)_2]^-$ an die weniger stark elektronegativ substituierten Ketenimine $R_2C=C=NR'$ (R=Ph, $R'=CH_3$; R=R'=Ph; $R=CH_3$, R'=Ph) nur noch eine $\nu(CO)$ -Absorption auf, die zudem bei wesentlich niedrigeren Wellenzahlen liegt. Dasselbe Phänomen hatten wir bereits bei der Umsetzung von $[Fe(\eta-C_5H_5)(CO)_2]^-$ mit Carbodiimiden beobachtet [17,19]. Hier wie dort nehmen wir an, dass sich das stark basische Imino-Stickstoffatom des Primäraddukts IX nucleophil an das C-Atom eines benachbarten Carbonylliganden addiert, wodurch ein Teil der auf das Heteroallen abgeführten Ladung wieder auf die Carbonylmetallatkomponente zurückfliesst (Gl. 2).

Verbindung	(HN)a	V(CO)	₽(C=N)	v(N C0) l>zw. v(CN)	Sonstige Banden
Anionische Addukte X a, b XIa a, b XIa c XIB c, b XIB c XIB c XIC		1995, 1940sst 1875sst 1869sst 1877sst 1876sst 1876sst 1876sst 1980m, 1880sst		1640m-st(br) 1626st-sst 1622st(br) 1623st 1627st 1640r 1660m-st(br)	1669, 1649st v(C=O, Ester)
lminoacyikomplexe XIIIa XIIIb XIIIc XIVa XIVb XIVb		1990, 1948sst 1998, 1946sst 2000, 1945sst 2022, 1970sst 2020, 1971sst 2025, 1977sst <i>d</i>	1612st 1610st 1605st 1550st 1528m-st(br)		322s ν(PdCi) 338s ν(PdCi)
A minocarbenkomplexe XVIa XVIb XVIc XVId XVId XVII	3320m-st, 3250s 3220st 3320s, 3265st 3170st 3225st	2050, 1988sst 2040st, 1996sst 2042, 1996sst 2030Sch, 1995sst 2045, 1965st, 1910sst(br) 2045n, 1923st ^d		1570st 1529st 1550st 1560st(br) 1525m	850sst(br) ν(PF ₆) 835sst(br) ν(PF ₆) 845sst(br) ν(PF ₆) 1740, 1700sst(br) ν(C=Ο, Ester) 825sst(sbr) ν(PF ₆)
a K _x Na _{1-x} -Salz, ^b In THF. ^c NBu ^A rSalz, ^d	In CH ₂ Cl ₂ ,			and a constant of the second secon	

TABELLE 1 CHARAKTERISTISCHE IR-ABSORPTIONEN (@m⁻¹, KBr)

•

156

Nicht auszuschliessen ist allerdings, dass die Cyclisierung über das terminale Ketenimin-C-Atom erfolgt und eine Metallacyclobutanspezies (XII) resultiert, wie sie bei Reaktionen von α -Chlorenaminen mit Na[W(η -C₅H₅)(CO)₃] oder Na[Re(CO)₅] nachgewiesen wurden [8].

Andrerseits wird jedoch das Verhalten der $[Fe(\eta-C_5H_5)(CO)_2]^-/Ketenimin-Addukte bei Protonierung (vgl. 2, 3) nur aus der Ferraazetidin-Carbamoyl-Struktur-heraus wirklich plausibel. Endgültige Klärung erbrachte hier die Röntgenstrukturanalyse eines Alkylierungsprodukts von XI, über die in der nachstehenden Arbeit berichtet wird. Im Gegensatz zu den sehr labilen Carbonylmetallat/$ Carbodiimid-Additionsverbindungen [17,19] konnten die mit Keteniminen gebildeten anionischen Chelatkomplexe XI auch in Form ihrer Tetrabutylammoniumsalze isoliert werden. Damit steht ihrer weiteren Reinigung und spektroskopischen wie analytischen Charakterisierung nichts mehr im Wege.

2. Monoprotonierung der Addukte XI: Iminoacylkomplexe

Die vorsichtige Protonierung der anionischen Dicarbonyl(η -cyclopentadienyl)ferrat/Ketenimin-Addukte XI mit einem Äquivalent HCl führt zu Neutralkomplexen, die sich mit Pentan aus den zur Trockne eingeengten Reaktionsansätzen extrahieren lassen. Dabei handelt es sich um goldgelbe bis senffarbene kristalline Substanzen, die thermisch recht stabil und in fester Form auch an Luft längere Zeit beständig sind.

Die Anwesenheit zweier $\nu(CO)$ -Absorptionen in den IR-Spektren (Tab. 1) zeigt an, dass die Ferraazetidin-Ringstruktur von XI in den Monoprotonierungsprodukten nicht erhalten geblieben ist. Angesichts der Säureempfindlichkeit von Carbamoylkomplexen [23] war eine Öffnung des Chelatringes an dieser Bindung auch zu erwarten.

Was jedoch überrascht, ist, dass anstelle der N-protonierten Aminoalkenylkomplexe VIII die isomeren C-protonierten Iminoacylkomplexe XIII entstehen.

$$(\eta - C_5H_5)(OC)_2Fe - C - C - NR'$$

$$(XIIIa, R = Ph, R' = CH_3;$$

$$XIIIb, R = R' = Ph;$$

$$XIIIc, R = CH_3, R' = Ph;$$

Verblndung	Temperatur (°C)	Solvens	δ(CH ₃)	δ(C ₅ H ₅)	ξ (CH)	δ (C ₆ H ₅)	δ(NH)
Iminoacylkomplexe							
XIIIa	25	cDCl ₃	3.40s	4.60s	5. 53s	7.0-7.4m	I
XIIIb	26	cDCl ₃		4.42s	5.42s	6.2-7.2m	1
XIIIc	25	cD_2Cl_2	1.26d (J 6.5 Hz)	4.78s	3.0 ^b (J 6.5 Hz)	6,3—7,5m	I
Aminocarbenkomplexe							
XVIa	25	CD3CN	3.53d (J 5.3 Hz)	5.20s	6.16s	7.0-7.7m	
XVIb	26	cD ₃ CN		4.91s	6.26s	6.9-7.8m	10.8(br)
XVIs	26	ND-CD	1.11d (J 6.7 Hz)	5.40s	атк b (лет н.)	7 17 7m	11 6(hr) ⁰
	2		1.35d (J 6.7 Hz)	5.23 5			(17)0177
	78	cD3CN	1.31d (J 6.5 Hz)	5.20s	3.67m	7.1-7.8m	11.2(br)
XVId ^d	25	CD3CN	d	5.11s 5.56s	3.83 s	7.1–7.8m	12.3(br)
					وبوج وبرباغ والمرود والمراجع المحاصب والمحاصب والمحاصر والمحاصر والمحاصر والمحاصر		

¹H-NMR-SPEKTREN (§-Werte (ppm)) ^a

TABELLE 2

^a JEOL, Modell JNM-60 HL (s, Singulett; d, Dublett; t, Triplett; q, Quartett; m, Multiplett; (br), breit).^b Septett.^c Bei -41°C.^d CH₃-Ester: 1,33t (J 7.2 Hz), OCH₂-Ester: 4.26q (J 7.2 Hz) (jeweils zusammen mit intensitütsschwächerem Triplett bzw. Quartett).

.

158

Dies wird sowohl durch die ¹H-NMR-Spektren (Tab. 2) belegt, in denen sich das Singulett des Benzhydryl- (XIIIa, XIIIb) bzw. das Septett des tertiären Isopropyl-H-Atoms (XIIIc) findet, als auch IR-spektroskopisch durch das Fehlen von ν (NH)-Absorptionen und das Auftreten neuer Banden mittlerer bis starker Intensität bei >1600 cm⁻¹, die wir C=N-Valenzschwingungen zuordnen. ¹H-NMR-Spektren gekühlter Proben von XIIIa zeigen keine Aufspaltung der C₅H₅- oder CH₃-Resonanzlinien, was so zu deuten ist, dass entweder die Inversion am Iminostickstoff selbst bei -43° C noch rasch ist, oder, wahrscheinlicher, nur ein Isomeres vorliegt [24]. Bemerkenswert am Fragmentierungsverhalten der Komplexe XIII im Massenspektrometer ist die aus sämtlichen Acyliminokomplexionen erfolgende Herausspaltung der sekundären Alkylgruppe (Tab. 3), die Massenlinien der entsprechenden kationischen Isocyanidkomplexe [Fe(C₅H₅)(CO)₂CNR]⁺, [Fe(C₅H₅)(CO)CNR]⁺ und [Fe(C₅H₅)CNR]⁺ haben zumeist hohe Intensität.

Acyliminokomplexe, die auch auf diverse andere Weisen zugänglich sind [25-31] und den Liganden sowohl η^1 - als auch η^2 -koordiniert [27,30,31] enthalten, können gegenüber Metallen in mittleren Oxidationsstufen ihrerseits als Komplexliganden fungieren [32,33].

Aus unseren Versuchen, XIIIa und XIIIb über den Iminostickstoff an Palladium(II) (aus $[PdCl_2(NCPh)_2]$ oder $[PdCl_2(COD)]$) zu koordinieren, resultierten pulverförmige Festsubstanzen der Zusammensetzung $[Cl_2Pd \{R'N=C(CHPh_2)Fe-(\eta-C_5H_5)(CO)_2\}_2]$ (XIVa, $R' = CH_3$; XIVb, R' = Ph), die im IR-Spektrum die erwartet höherfrequenten $\nu(CO)$ -Banden sowie deutlich abgesenkte $\nu(C=N)$ -Absorptionen aufweisen (Tab. 1). Wegen ihrer Zersetzlichkeit in Lösung wurde auf eine weitere Reinigung dieser Acyliminoligand-überbrückten heterotrimetallischen Substanzen verzichtet.

3. Diprotonierung der Addukte IX bzw. XI: Aminocarbenkomplexe

Die weitere Protonierung der Iminoacylkomplexe XIII bzw. die Protonierung der anionischen (X, XI) und dianionischen Addukte (IX, Kat = Na, $L_x M = Cr(CO)_5$, R = Ph, R' = p-Tol, n = 2) mit zwei Äquivalenten HCl führt zu den kationischen und neutralen Aminocarbenkomplexen XV und XVII. Während

jedoch XVII nach chromatographischer Aufarbeitung in nur 4% Ausbeute in gelben nadeligen Kristalle anfällt, werden bei den kationischen Aminocarben-

Ion ^b	XIIIa ($\mathbf{R} = \mathbf{Ph}, \mathbf{R'} = \mathbf{CH}_3$)	XIIIb	$(\mathbf{R} = \mathbf{R'} = \mathbf{Ph})$	XIIIc ($\mathbf{R} = \mathbf{CH}_3, \mathbf{R}' = \mathbf{Ph}$
	m/e	Intensität	m/e	Intensität	m/e	Intensität
					323	>0
$[M - CO]^+$	357	8	419	7	295	39
$[M - 2 CO]^+$	329	15	391	34	267	88
[FeCp(CO)2 CNR'] ⁺	218	29	280	44	280	2
[FeCp(CO)CNR'] ⁺	190	24	252	28	252	5
[FeCp(CNR')] ⁺	162	81	224	69	224	95
[Fe(Cp)CN] ⁺					147	100
[FeCp] ⁺	121	87	121	98	121	100
Fe ⁺	56	71	56	43	56	98
[R ₂ CCNR'H] ⁺	208	56				
[R ₂ CH] ⁺	167	100	167	100		

MASSENSPEKTREN DER IMINOACYLKOMPLEXE XIIIa-XIIIc (70 eV)^a

^a CH-5 Varian. ^b Cp = η -C₅H₅.

Eisenkomplexen durchwegs Ausbeuten von 50–60% erzielt. Isolierung und Reinigung dieser gelben bis orangefarbenen Salze erfolgen am zweckmässigsten in Form ihrer Hexafluorophosphate (XVI), die in Aceton, CH_2Cl_2 und Acetonitril gut, in Ether wenig und in Pentan und Wasser unlöslich sind. In den IR-Spektren der Komplexe XVI und XVII finden sich sämtliche zu fordernden charakteristischen Frequenzen, insbesondere die scharfe ν (NH)-Bande zwischen 3170 und 3320 cm⁻¹ sowie eine starke Absorption im Bereich von 1520–1575 cm⁻¹, die der ν (C…N)-Schwingung des Carbenliganden zuzuordnen ist (Tab. 1).

Die ¹H-NMR-Spektren von XVIc und XVId zeigen jeweils zwei C₅H₅-Signale im Verhältnis 3/1 und 4/1, in XVIc erscheint zudem das CH₃-Dublett der Isopropylgruppe doppelt (Tab. 2). Wie bei einer Vielzahl ähnlich gelagerter Fälle [22,34] ist dieses Phänomen auf das Vorliegen zweier Isomerer (Rotamerer) zurückzuführen, die sich in der Stellung der N-Substituenten (*exo, endo*) unterscheiden. Aus der Koaleszenztemperatur der C₅H₅-Signale von XVIc ($T_{\rm K}$ 78°C) errechnet sich eine C:::N-Rotationsbarriere von 77 ± 2 kJ mol⁻¹. Demgegenüber wird bei Anwesenheit des sterisch besonders anspruchsvollen Benzhydrylsubstituenten (XVIa, XVIb) nur mehr ein Isomeres, vermutlich das *exo*-Isomere, beobachtet (Tab. 2).

Das Massenspektrum von XVII zeigt eine Konkurrenz zwischen dem üblichen stufenweisen CO-Abbau und der Herausspaltung des Benzhydrylrestes (vgl. experimenteller Teil). Die Abspaltung der sekundären Alkylgruppe spielt auch bei der Fragmentierung von Iminoacylkomplexen eine wesentliche Rolle (vgl. 2).

Experimenteller Teil

Die Umsetzungen wurden unter Stickstoffatmosphäre in getrockneten, N₂-gesättigten Lösungsmitteln durchgeführt. Für die Protonierungen wurde eine Lösung von HCl in Diethylether verwendet, deren Gehalt durch Titration mit 0.1 *M* NaOH ermittelt wurde. K_xNa_{1-x}[Fe(η -C₅H₅)(CO)₂] [35], [NBu²₄][Fe(η -

TABELLE 3

 $C_5H_5)(CO)_2$] [35], Na₂[Cr(CO)₅] [36] und die Ketenimine R₂C=C=NR' (R = Ph, R' = CH₃, Ph, p-Tol; R = CH₃, R' = Ph; R = CO₂Et, R' = Ph) [37] wurden nach Literaturvorschriften dargestellt. Ausbeute, Farbe, Schmelzpunkt und Analysenwerte der synthetisierten Komplexe sind in Tab. 4 aufgeführt.

1. Addukte $\{K_x Na_{1-x} [Fe(\eta - C_5H_5)(CO)_2] + R_2C = C = NR'\}$ (XIa, R = Ph, $R' = CH_3$; XIb, R = R' = Ph; XIc, $R = CH_3$, R' = Ph; X, $R = CO_2Et$, R' = Ph). Zu 125 ml einer 0.08 M THF-Lösung von $K_x Na_{1-x} [Fe(\eta - C_5H_5)(CO)_2]$ gibt man bei -78°C 10 mmol des betreffenden Ketenimins, lässt dann auf Raumtemperatur erwärmen und verfolgt die Adduktbildung IR-spektroskopisch (vgl. Abschnitt 1). Sie ist nach 1/2 (X) bzw. nach ca. 18 h (XIa–XIc) abgeschlossen.

2. Addukte $\{[NBu_{4}^{n}][Fe(\eta-C_{5}H_{5})(CO)_{2}] + Ph_{2}C=C=NR\}$ ($R = CH_{3}$, Ph). 3.64 g (10 mmol) $[NBu_{4}^{n}][Fe(\eta-C_{5}H_{5})(CO)_{2}]$ werden in 125 ml THF gelöst und bei -78° C mit der äquivalenten Menge Ketenimin versetzt. Man lässt 18 h bei Raumtemperatur rühren, engt dann auf ein Volumen von 20 ml ein und fällt das Produkt durch Zutropfen einer 1/1-Ether/Pentan-Mischung. Zur weiteren Reinigung wird nochmals in THF aufgenommen, über Avicel (Fa. Merck, Darmstadt) filtriert und mit Ether gefällt. Der erhaltene gelbe Feststoff wird im Hochvak. getrocknet.

3. Dicarbonyl(η -cyclopentadienyl) {N-methyl-diphenylacetimino}eisen, [Fe-(η -C₅H₅)(CO)₂ {C(CHPh₂)NCH₃}] (XIIIa). Addukt XIa in THF (vgl. 1) wird wieder auf -78°C gekühlt und mit einer Lösung von 10 mmol HCl in Ether versetzt. Dann wird das Lösungsmittel entfernt und der Rückstand mit insgesamt 700 ml Pentan in mehreren Portionen extrahiert. Nach Abziehen des Pentans wird in wenig CH₂Cl₂ gelöst, filtriert, und das Filtrat bis zur beginnenden Trübung mit Pentan überschichtet. Bei -20°C kristallisieren 2.04 g honiggelbe Blättchen aus.

4. Dicarbonyl(η -cyclopentadienyl){N-phenyl-diphenylacetimino}eisen, [Fe(η -C₅H₅)(CO)₂{C(CHPh₂)NPh}] (XIIIb). Addukt XIb (vgl. 1) wird bei -78°C mit 10 mmol HCl in Ether protoniert. Anschliessend wird wie unter 3. aufgearbeitet: 2.88 g goldgelbe Kristalle.

5. Dicarbonyl(η -cyclopentadienyl){N-phenyl-dimethylacetimino}eisen, [Fe-(η -C₅H₅)(CO)₂{C[CH(CH₃)₂]NPh}] (XIIIc). Zur Lösung von Addukt XIc in THF (vgl. 1) gibt man bei -78°C 10 mmol HCl in Ether, entfernt nach 10 min das Lösungsmittel und extrahiert den Rückstand wiederholt mit insgesamt 500 ml Diethylether. Dann zieht man erneut zur Trockne ab, nimmt in Dichlormethan auf und chromatographiert an Kieselgel (Fa. Merck: 0.2-0.5 mm). Die 1. Fraktion enthält [Fe(η -C₅H₅)(CO)₂]₂, die 2. den gewünschten Komplex, der nach Umkristallisieren aus CH₂Cl₂/Pentan in Form senfgelber Blättchen (1.25 g) anfällt.

6. $[Cl_2Pd\{CH_3N=C(CHPh_2)Fe(\eta-C_5H_5)(CO)_2\}_2]$ (XIVa). 1.35 g (3.5 mmol) XIIIa und 0.5 g (1.75 mmol) PdCl₂(η^4 -C₈H₁₂) in je ca. 25 ml CH₂Cl₂ werden vermischt. Nach 45 min engt man auf etwa 20 ml ein, fällt den Komplex durch Zugabe von Ether/Pentan und kristallisiert aus CH₂Cl₂/Ether/Pentan um. 0.95 g ockergelber Feststoff.

7. $[Cl_2Pd \{PhN=C(CHPh_2)Fe(\eta-C_5H_5)(CO)_2\}_2]$ (XIVb). 1.0 g (2.24 mmol) XIIIb und 0.43 g (1.12 mmol) PdCl₂(NCPh)₂ in je ca. 25 ml CH₂Cl₂ werden bei Raumtemperatur vereinigt. Nach 1 h wird filtriert (Zellulose), auf 20 ml eingeengt und mit Ether/Pentan (1/1) gefällt. 0.85 g ockerfarbener Feststoff.

Verbindung	Farbe	Fp, (°Ca)	Ausbeute	Summenformel	Analyse (Gef.	(ber.) (%))	
			(04)	(Molmasse)	U	Н	N
XIa, NBud-Salz	heligelb	57 (Zers.)	59	C ₃₈ H ₅₄ FeN ₂ O ₂	71.18	9,01	4.30
· 1				(626.71)	(72.83)	(8,69)	(4.47)
XIb, NBud-Salz	zitronengelb	127 (Zers.)	67	C43II ₅₆ FeN2O2	74.85	8,88	3,83
				(688.78)	(14.98)	(8,20)	(4.07)
XIIIa	honiggelb	126	53	C22H19FeNO2	68.64	4.97	3.65
				(385.25)	(68.59)	(4,97)	(3.64)
XIIIb	goldgelb	168 (Zers.)	64	C271121 FeNO2	72.48	4.79	3,10
				(447.32)	(72.50)	(4.73)	(3.13)
XIIIc	senfgelb	94	37	C ₁₇ II ₁₇ FeNO2	63,88	5,32	4,41
				(323,18)	(63,18)	(6,30)	(4,33)
XIVa	ockergelb	166 (Zers.)	57	C44H ₃₈ Cl2Fe2N2O4Pd	55,07	4,19	2,55
				(947.80)	(55,76)	(4,04)	(2.96)
XIVb	ocker	123 (Zers.)	11	C54H42Cl2Fe2N2O4Pd	59.51	4.06	2,35
				(1071.94)	(60.51)	(3.95)	(2.62)
XVIa	zitronengelb	246 (Zers.)	57	C ₂₂ H ₂₀ F ₆ FeNO ₂ P	49,84	3,82	2,59
				(531.22)	(49,74)	(3.80)	(2,64)
XVIb	hellgelb	188 (Zers.)	48	C ₂₇ II ₂₂ F ₆ FeNO ₂ P	54.48	3.72	2.32
				(693.29)	(54,66)	(3.74)	(2.36)
XVIc	orangegelb	211 (Zers.)	61	C ₁₇ H ₁₈ F ₆ FeNO ₂ P	43.63	3,98	2,98
				(469.15)	(43,52)	(3.87)	(2,99)
XVId	hellgelb	118 (Zers.)	64	C ₂₁ II ₂₂ F ₆ FeNO ₆ P	43,03	3.72	2.33
				(588.22)	(43,10)	(3.79)	(2,39)
хип	gelb	116	4	C ₂₆ H ₁₉ CrNO ₅	65.67	4,02	2.77
				(447.44)	(65,41)	(4,01)	(2.93)
^a Unkorrigiert.		an marine a contra a contra da contra de las contras de las contras de las contras de las contras de las contra		- Mar of Anno - Anno	and the second s	and a summer pairs of the second	

TABELLE 4 ANALYSEN UND PHYSIKALISCHE EIGENSCHAFTEN

162

8. {Benzhydryl(p-tolylamino)carben} pentacarbonylchrom, [Cr{C(CHPh₂)-NH-p-Tol}(CO)₅] (XVII). 1.19 g (5 mmol) Na₂[Cr(CO)₅] werden in 150 ml THF gelöst und bei -78° C mit 1.42 g (5 mmol) Diphenylketen-N-p-tolylimin umgesetzt. Dann lässt man 3.5 h bei Raumtemperatur reagieren, kühlt wieder auf -78° C, gibt 10 mmol HCl in Diethylether zu und zieht dann die flüchtigen Bestandteile ab. Den Rückstand extrahiert man mit insgesamt 500 ml Pentan und engt die Extrakte dann wieder zur Trockne ein. Jetzt wird in CH₂Cl₂ aufgenommen und bei -8° C an einer Kieselgelsäule (Fa. Merck: 0.2-0.5 mm) chromatographiert. Die erste, grüngelbe Fraktion enthält mit Cr(CO)₆ verunreinigtes Produkt und wird auf einer präparativen Dünnschichtplatte (Kieselgel) weiter aufgetrennt (Laufmittel: Pentan/CH₂Cl₂ (3/1)). Die erste gelbe Phase wird abgenommen und mit CH₂Cl₂ eluiert. Aus Pentan kristallisieren bei -20° C 0.10 g gelbe Nadeln. Massenspektrum: [Cr{C(CHPh₂)NH-p-Tol}(CO)_n]⁺ (n = 5-0), [Cr{CNH-p-Tol}(CO)_n]⁺ (n = 5-0).

9. {Benzhydryl(methylamino)carben} dicarbonyl(η -cyclopentadienyl)eisen(II)hexafluorophosphat, [Fe(η -C₅H₅){C(CHPh₂)NHCH₃}(CO)₂][PF₆] (XVIa). XIa (vgl. 1) wird bei -78°C mit der doppelten Menge HCl in Ether (20 mmol) versetzt Nach 10 min wird das Lösungsmittel entfernt und der Rückstand in 125 ml Aceton aufgenommen. Zu dieser Lösung gibt man 1.63 g (10 mmol) [NH₄][PF₆], rührt 1 h, filtriert über Zellulose und engt auf 25 ml ein. Mit Ether fallen acetonhaltige Kristalle aus. Umkristallisieren aus CH₂Cl₂/Ether ergibt lösungsmittelfreies Produkt.

10. {Benzhydryl(phenylamino)carben} dicarbonyl(η -cyclopentadienyl)eisen-(II)hexafluorophosphat, [Fe(η -C₅H₅){C(CHPh₂)NHPh}(CO)₂][PF₆](XVIb). Aus XIb (vgl. 1), 20 mmol HCl in Ether und 1.63 g (10 mmol) [NH₄][PF₆] wie unter 9. beschrieben. Ausbeute: 2.83 g.

11. Dicarbonyl(η -cyclopentadienyl){isopropyl(phenylamino)carben}eisen(II)hexafluorophosphat, [Fe(η -C₅H₅)(CO)₂{C[CH(CH₃)₂]NHPh}][PF₆] (XVIc). Aus XIc (vgl. 1), 20 mmol HCl in Ether und 1.63 g (10 mmol) [NH₄][PF₆] wie unter 9. beschrieben. Ausbeute: 2.85 g.

12. {Dicarbethoxymethyl(phenylamino)carben} dicarbonyl(η -cyclopentadienyl)eisen(II)-hexafluorophosphat, [$Fe(\eta$ -C₅H₅){ $C[CH(CO_2Et)_2]NHPh$ }(CO)₂] [PF_6] (XVId). Aus XId (vgl. 1), 20 mmol HCl in Ether und 1.63 g (10 mmol) [NH_4][PF_6] wie unter 9. beschrieben. Nach Filtration über Zellulose wird jedoch zur Trockne abgezogen, in 25 ml CH₂Cl₂ gelöst und mit Ether gefällt. Anschliessend wird nochmals aus CH₂Cl₂/Ether umkristallisiert: 3.17 g hellgelbes Pulver.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit.

Literatur

- 1 C.G. Kreiter und R. Aumann, Chem. Ber., 111 (1978) 1223.
- 2 T.A. Mitsudo, H. Watanabe, Y. Komiya, Y. Watanabe und Y. Takaegami, J. Organometal. Chem., 190 (1980) C39.
- 3 E.O. Fischer und W. Schambeck, J. Organometal. Chem., 201 (1980) 311.

- 4 D.J. Yarrow, J.A. Ibers, Y. Tatsuno und S. Otsuka, J. Amer. Chem. Soc., 95 (1973) 8590
- 5 J.K.P. Ariyaratne und M.L.H. Green, J. Chem. Soc., (1963) 2976; P.M. Treichel, D.W. Firsich und T.H. Lemmen, J. Organometal. Chem., 202 (1980) C77.
- 6 J.S. Ricci, J.A. Ibers, M.S. Fraser und W.H. Baddley, J. Amer. Chem. Soc., 92 (1970) 3489; 93 (1971) 2391.
- 7 S.R. Su, J.A. Hanna und A. Wojcicki, J. Organometal. Chem., 21 (1970) P21.
- 8 R.B. King und K.C. Hodges, J. Amer. Chem. Soc., 97 (1975) 2702.
- 9 R.B. King und M.S. Saran, Inorg. Chem., 14 (1975) 1018.
- 10 R.B. King und S.P. Diefenbach, Inorg. Chem., 18 (1979) 69.
- 11 W. Beck, W. Hieber und G. Neumair, Z. Anorg. Allgem. Chem., 344 (1966) 285.
- 12 W. Beck, R.E. Nitzschmann und H.S. Smedal, J. Organometal. Chem., 8 (1967) 547.
- 13 W.P. Fehlhammer, K. Bartel und H. Schmidt, J. Organometal. Chem., 97 (1975) C61.
- 14 W. Beck, H. Brix und F.H. Köhler, J. Organometal. Chem., 121 (1976) 211.
- S. Otsuka, A. Nakamura und T. Yoshida, J. Organometal. Chem., 7 (1967) 339; K. Ogawa, A. Torii, H. Kobayashi-Tamura, T. Watanabé, T. Yoshida und S. Otsuka, J. Chem. Soc. Chem. Commun., (1971) 991.
- 16 W.P. Fehlhammer und H. Stolzenberg in G. Wilkinson (Hrsgb.), Comprehensive Organometallic Chemistry, Vol. 3, Pergamon Press, Oxford, 1982.
- 17 W.P. Fehlhammer, A. Mayr und M. Ritter, Angew. Chem., 89 (1977) 660; Angew. Chem. Int. Ed. Engl., 16 (1977) 641.
- 18 W.P. Fehlhammer und A. Mayr, J. Organometal. Chem., 191 (1980) 153.
- 19 W.P. Fehlhammer, A. Mayr und G. Christian, Angew. Chem., 90 (1978) 920; Angew. Chem. Int. Ed. Engl., 17 (1978) 866.
- 20 W.P. Fehlhammer, A. Mayr und H. Stolzenberg, Angew. Chem., 91 (1979) 661; Angew. Chem. Int. Ed. Engl., 18 (1979) 626.
- 21 W.P. Fehlhammer und H. Stolzenberg, Inorg. Chim. Acta, 44 (1980) L151.
- 22 W.P. Fehlhammer, G. Christian und A. Mayr, J. Organometal. Chem., 199 (1980) 87.
- 23 R.J. Angelici, Accounts Chem. Res., 5 (1972) 335.
- 24 Vgl. z.B. D.F. Christian, H.C. Clark und R.F. Stepaniak, J. Organometal. Chem., 112 (1976) 209.
- 25 R.B. King und K.H. Pannell, J. Amer. Chem. Soc., 90 (1968) 3984.
- 26 Y. Yamamoto und H.Yamazaki, Coord. Chem. Rev., 8 (1972) 225.
- 27 R.D. Adams, D.F. Chodosh und N.M. Golembeski, J. Organometal. Chem., 139 (1977) C39.
- 28 M. Tanaka und H. Alper, J. Organometal. Chem., 168 (1979) 97.
- 29 A. Mantovani, G. Facchin, T. Boschi und B. Crociani, J. Organometal. Chem., 206 (1981) C11.
- 30 H. Werner, S. Lotz und B. Heiser, J. Organometal. Chem., 209 (1981) 197.
- 31 A. Dormond und A. Dahchour, J. Organometal. Chem., 193 (1980) 321.
- 32 z.B. B. Crociani, M. Nicolini und R.L. Richards, J. Chem. Soc. Dalton Trans., (1978) 1478.
- 33 F. Bonati und H.C. Clark, Can. J. Chem., 57 (1979) 483.
- 34 D.F. Christian, H.C. Clark und R.F. Stepaniak, J. Organometal. Chem., 112 (1976) 227, D.J. Cardin, B. Cetinkaya und M.F. Lappert, Chem. Rev., 72 (1972) 545 und dort zit. Lit.
- 35 J.E. Ellis und E.A. Flom, J. Organometal. Chem., 99 (1975) 263.
- 36 W.P. Fehlhammer, W.A. Herrmann und K. Öfele in G. Brauer (Hrsgb.), Handbuch der Präparativen Anorganischen Chemie, Bd. III, 3. Auflage, S. 1818, Ferdinand Enke Verlag, Stuttgart, 1981.
- 37 H.J. Bestmann, J. Lienert und L. Mott, Liebigs Ann. Chem., 718 (1968) 24.